A DESCRIPTION OF THE WEIERSTRASS GAP SEQUENCE BY MEANS OF THE RIEMANN THETA FUNCTION

BY

RYUTARO HORIUCHI'

Faculty of Science, Kyoto Sangyo University, Kamigamo Kitaku Kyoto 603, Japan

Dedicated to Professor Yukio Kusunoki on his 60th birthday

ABSTRACT

We show that the vanishing of the Riemann theta function on some subvarieties of the Jacobi varieties of a compact Riemann surface determines the gap sequence at the base point of the Jacobi homomorphism. This gives other defining equations for the varieties of Weierstrass points W'_k defined by Lax.

Introduction

The Jacobi homomorphism φ of a compact Riemann surface M of genus g into its Jacobian variety J(M) depends on its base point, i.e., lower limit of the integral of first kind. Lewittes [10] emphasized the importance of the role of the base point, and showed that a point B is a Weierstrass point if and only if $\theta(W_1 - K) \equiv 0$ with the base point at B, where θ is the Riemann theta function, and $\theta(W) \equiv 0$ means that $\theta(W) = 0$ for all $w \in W$.

The main purpose of this paper is to extend this Lewittes' result. Our result is: The gap sequence at a point B is completely determined by whether $\theta(W_s - W_t - K) \equiv 0$ or $\not\equiv 0$ with the base point at B for any integers s and t.

Although this is merely a version of the Riemann-Roch theorem, it seems to give a new approach to the problem of finding the number of moduli of the space which is formed by all the Riemann surfaces having a Weierstrass point with a specified Weierstrass sequence. Such kinds of problems have been investigated by many mathematicians: Hensel-Landsberg [6], Rauch [14], Farkas [2], Lax [8, 9], Pinkham [13], Rim-Vitulli [15]. We in fact show that if W'_k denotes the closed analytic subspace of V defined by Lax, then $\pi(W'_k)$ is also

Received November 7, 1984 and in revised form May 15, 1985

[†] This work was partially done at the Mathematical Institute of the University of Erlangen, supported by a DAAD-stipend. The author would like to thank Prof. W.-D. Geyer for his invitation.

defined by the condition $\theta(W_r - W_{g^{-1+r-k}} - K) \equiv 0$ $(k \leq g)$ or $\theta(W_{k-g+r} - W_{r-1} - K) \equiv 0$ $(g \leq k)$, where $\pi: V \to T_g$ denotes the universal curve over the Teichmüller space T_g . At last we give a defining equation for $W_g = W_g^1$.

The author wishes to record here his warmest acknowledgement to Professor H. M. Farkas for his valuable comments and suggestions.

§1. Preliminaries

Let M denote a compact Riemann surface of genus $g \ge 2$. Let D be a divisor on M. We denote by l(D) the dimension of the space of meromorphic functions on M whose divisors are multiples of -D, i(D) the dimension of the space of abelian differentials on M whose divisors are multiples of D.

To each point P on M, there corresponds a sequence of g integers n_i , $0 < n_1 < n_2 < \cdots < n_g < 2g$ such that there exists no meromorphic function with a pole of order n_i at P as its only singularity. The sequence is called the gap sequence at B, and the integer n_i is called a gap at P, and their complement in the positive integers are called the nongaps at P. A point with $n_g > g$ is called a Weierstrass point. Thus there exists a meromorphic function on M with a pole of order $m \le g$ at a Weierstrass point as its only singularity. There is a finite number of Weierstrass points on M. For more details we refer to [4].

Let J(M) be the Jacobian variety of M, and φ be the Jacobi homomorphism defined by

$$\varphi(D) = (u_1(D), u_2(D), ..., u_g(D)) = \left(\int_{rB}^{D} du_1, \int_{rB}^{D} du_2, ..., \int_{rB}^{D} du_g\right),$$

where u_i are a basis of abelian differentials of 1st kind and the degree of the divisor D is r. For $r \ge 0$, let $W_r \subseteq J(M)$ denote the set $\{\varphi(D) | D : a$ positive divisor of degree r on M, which are irreducible subvarieties of dimension r, and let $W_r^s \subseteq W_r$ denote the set $\{\varphi(D) | D : a$ positive divisor of degree r on M such that $I(D) \ge s$. These subsets W_r^s are analytic subvarieties of J(M), but many not be irreducible.

If S and T are subvarieties of J(M), we can construct the following subvarieties.

$$-S = \{-s \mid s \in S\},\$$

$$S + T = \{s + t \mid s \in S, t \in T\},\$$

$$S - T = S + (-T),\$$

$$S \ominus T = \{u \mid u \in J(M), T + u \subseteq S\} = \bigcap_{t \in T} (S - t).$$

For the proofs of the following lemmas, we refer to [4], [5], [7], [11].

LEMMA 1. $W_r^s(-)(-W_t) = W_{r+t}^{s+t} (1 \le s \le r+1)$.

LEMMA 2. $W_r^s \bigcirc W_t = W_{r+t}^s$ $(t \le r - s + 1)$.

To prove Lemma 4 (and Lemma 2), we need the next lemma.

LEMMA 3. If A, B and C are subvarieties of J(M), then

$$(A \ominus B) \ominus C = A \ominus (B + C).$$

LEMMA 4. $W_r^{\nu} \cap (W_s - W_t) = W_{r+s+t}^{\nu+t} \ (1 \le \nu \le r - s + 1).$

PROOF.
$$W_r^{\nu} \ominus (W_s - W_t) = (W_r^{\nu} \ominus W_s) \ominus (-W_t) = W_{r-s}^{\nu} \ominus (-W_t) = W_{r-s+t}^{\nu+t}$$

We denote by θ the Riemann theta function ([4], [10], [12]). The function θ may be considered as a multiplicative function on J(M). The zeros are well-defined, and the zero set is known to be $W_{g-1} + K$, where K is the vector of Riemann constants (Theorem 1). Lewittes [10] studied how the Jacobi homomorphism depends on the base point. We denote φ_B , K_B when B is the base point.

LEMMA 5. (1)
$$\varphi_{B'}(P) = \varphi_{B}(P) - \varphi_{B}(B')$$
, (2) $K_{B'} = K_{B} + (g-1) \cdot \varphi_{B}(B')$.

It follows also from this lemma that $W_{g-1} + K$ does not depend on the base point. The vectors of Riemann constants form an analytic curve \tilde{K} in J(M) which is independent of the base pont. In fact,

$$\tilde{K} = \bigcup_{P \in M} K_P = K_B + (g-1) \cdot \varphi_B(P),$$

and the right-hand side expression implies the independence on the base point. The curve \tilde{K} can thus be written as $(g-1) \cdot W_1 + K$, and is, of course, contained in $W_{g-1} + K$.

§2. Main result

We now study the relation between the gap sequences of Weierstrass points and the vanishing of the theta function on the subvarieties $W_s - W_t - K$ of the Jacobian variety J(M).

THEOREM 1. (Riemann) The zero set of the theta function is $W_{g-1} + K$.

For the proof of this theorem, we refer to [4], [10].

PROPOSITION 1. Let $e \in J(M)$. If for each positive integer s, t(s) is the integer such that $\theta(W_s - W_{t(s)} - e) \equiv 0$, $\theta(W_s - W_{t(s)+1} - e) \not\equiv 0$, then t(s) is a monotone decreasing function in s, and

$$e \in (W_{g-1+s-t(s)}^{s+1} \setminus W_{g-2+s-t(s)}^{s+1}) + K,$$

where $A \setminus B$ means the complement of B in A.

Proof.

$$\theta(W_s - W_{t(s)} - e) \equiv 0 \text{ if and only if}$$

$$W_s - W_{t(s)} - e \subseteq W_{g-1} + K = -(W_{g-1} + K) \text{ if and only if}$$

$$e \in W_{g-1} \ominus (W_{t(s)} - W_s) + K = W_{g-1+s-t(s)}^{s+1} + K.$$

where we used the fact that the theta function is an even function. This means that $\theta(W_s - W_{t(s)+1} - e) \neq 0$ if and only if $e \notin W_{s-2+s-t(s)}^{s+1} + K$.

If
$$t(s) > t(s-1)$$
, then

$$W_{s-1} - W_{t(s-1)+1} - e \subseteq W_s - W_{t(s)} - e$$

which contradicts the hypotheses that $\theta(W_s - W_{t(s)} - e) \equiv 0$ and $\theta(W_{s-1} - W_{t(s-1)+1} - e) \neq 0$. This implies that

$$t(s) \le t(s-1)$$
 and $g-1+s-t(s) > g-1+(s-1)-t(s-1)$.

PROPOSITION 2. Let $e \in J(M)$. If for each non-negative integer t, s(t) is the integer such that $\theta(W_{s(t)} - W_t - e) \equiv 0$, $\theta(W_{s(t)+1} - W_t - e) \not\equiv 0$, then s(t) is a monotone decreasing function of t, and

$$e \in (W_{g-1+s(t)-t}^{s(t)+1} \backslash W_{g+s(t)-t}^{s(t)+2}) + K.$$

COROLLARY 1. Given a base point $B \in M$, $\theta(W_s - W_t - K) \equiv 0$ if and only if $l(B^{s^{-1+s-t}}) \ge s+1$.

PROOF. $\theta(W_s - W_t - K) \equiv 0$ if and only if $0 \in W_{g-1+s-t}^{s+1}$ if and only if $\varphi(B^{g-1+s-t}) \in W_{g-1+s-t}^{s+1}$.

THEOREM 2 (Riemann). For $e \in J(M)$ such that $\theta(e) = 0$, $\theta(W_s - W_s - e) \equiv 0$ but $\theta(W_{s+1} - W_{s+1} - e) \neq 0$ if and only if $e \in (W_{g-1}^{s+1} \setminus W_{g-1}^{s+2}) + K$.

PROOF. This follows easily from the proof of Proposition 1.

This result does not depend on the base point by virtue of the symmetricity of the subvarieties $W_s - W_s$.

LEMMA 6. Let $s \ge 1$ be an integer, and $B \in M$ be a base point. If t(s) $(0 \le t(s) \le g - 2)$ is the integer such that $\theta(W_s - W_{t(s)} - K) = 0$, but $\theta(W_s - W_{t(s)+1} - K) \ne 0$, then g - 1 + s - t(s) is a nongap at B.

PROOF. It follows from Corollary 1 that $l(B^{g^{-1+s-t(s)}}) \ge s+1$ and $l(B^{g^{-1+s-t(s)-1}}) \le s$. This shows that g-1+s-t(s) is a nongap at B.

LEMMA 7. Let $t \ge 0$ be an integer, and $B \in M$ be a base point. If s(t) $(0 \le s(t) \le g - 1)$ is the integer such that $\theta(W_{s(t)} - W_t - K) = 0$, but $\theta(W_{s(t)+1} - W_t - K) \ne 0$, then g + s(t) - t is a gap at B.

PROOF. From Corollary 1, it follows that $l(B^{g^{-1+s(t)-t}}) \ge s(t)+1$ and $l(B^{g+s(t)-t}) \le s(t)+1$. This shows that g+s(t)-t is a gap at B.

THEOREM 3. Let $B \in M$ be a base point such that $l(B^{g^{-1}}) = s_0 + 1$. For integers $t, 0 \le t \le s_0$, we have $s_0 + 1$ such gaps g + s(t) - t at B as are obtained in Lemma 7 and these are all the gaps at B not less than g. If $s_0 \ge 1$, then for integers s, $1 \le s \le s_0$, we have s_0 such nongaps g - 1 + s - t(s) at B as are obtained in Lemma 6 and these are all the nongaps at B not greater than g - 1. Thus the gap sequence at B is completely determined.

PROOF. We prove the second assertion. Riemann's theorem proves that $t(s) \ge s_0 \ge s$ so that $g-1+s-t(s) \le g-1$. Proposition 1 and Lemma 6 give s_0 different nongaps $g-1+s-t(s) \le g-1$ $(1 \le s \le s_0)$ at B, and these are all the nongaps g-1 at B, since $l(B^{g-1}) = s_0 + 1$.

The first assertion can be proved similarly.

We can state the analogue of Riemann's vanishing theorem.

Proposition 3. If $\theta(W_s - W_t - e) \equiv 0$ for $1 \le s \le t$, then

$$\frac{\partial^{l_1+\cdots+l_g}}{\partial u_1^{l_1}\cdots\partial u_g^{l_g}}\theta(W_{t-s}+e)\equiv 0, \qquad l_1+\cdots+l_g\leq s.$$

PROPOSITION 4. If $\theta(W_s - W_{t+1} - e) \neq 0$ for $1 \leq s \leq t$, then there exist indices i_1, \ldots, i_s such that

$$\frac{\partial^{s}}{\partial u_{i}\cdots\partial u_{i}}\,\theta(W_{i-s+1}+e)\not\equiv0.$$

PROOFS OF PROPOSITIONS 3 AND 4. We only need to follow the routine argument. For details we refer to Farkas-Kra ([4], pp. 295-297).

§3. Comments

The conditions of Lemmas 6 and 7 imply that W_r^s contains 0 or not with the base point at B. It is stated in Gunning's lecture notes ([5], p. 52) that

$$r \cdot W_1 \cap W_r^s = \{r \cdot \varphi(P) \mid \text{ there are at least } s - 1 \text{ nongaps at } P \text{ in } (1, 2, ..., r)\}.$$

If 0 is contained in W_r^s with the base point at B, then $\varphi(B') \in W_r^s$. This explains why we can get the information about the gap sequence at the base point.

§4. In relation to the moduli problem

The description of the Weierstrass gap sequence by means of the Riemann theta function in Theorem 2 is closely related to the works by Duma [1], Lax [8, 9]. Lax defined the closed analytic subspaces W'_k of V such that

(i) if $k \leq g$, then

 $|\mathcal{W}_k'| = \{(s, P) : \text{in the gap sequence at } P \in V_s, \text{ there are at least } r \text{ nongaps } \leq k\},$ and

(ii) if $k \ge g$, then

 $|\mathcal{W}_{k}'| = \{(s, P) : \text{in the gap sequence at } P \in V_{s}, \text{ there are at least } r \text{ gaps } > k\}.$

where V_s is the fiber over $s \in T_g$, and proved

THEOREM 4. (Lax) $W_k^1 - W_k^2$ is smooth of pure dimension k + 2g - 3 $(2 \le k \le g)$ and $W_k^1 - W_k^2$, if nonempty, is smooth of pure dimension 4g - k - 3 $(g \le k)$.

Meanwhile, it follows from Corollary 1 that $\pi(W_k)$ is also defined by the condition $\theta(W_r - W_{g^{-1+r-k}} - K) \equiv 0$ $(k \leq g)$ or $\theta(W_{k-g^{+r}} - W_{r^{-1}} - K) \equiv 0$ $(k \geq g)$. Thus it is hopeful that the description could be a new approach to the problem of the moduli of Riemann surfaces of genus g having a Weierstrass point with a specified gap sequence. We shall give a more explicit form to the condition $\theta(W_1 - K) \equiv 0$ for $W_g = W_g^1$.

Expanding in Taylor series $\theta(W_{g-1}+K)\equiv 0$ about B^{g-1} and $\theta(W_1-K)\equiv 0$ about B in the case g=4, we obtain that

$$\sum_{i} \frac{\partial \theta}{\partial u_{i}}(K) u_{i}^{(4)}(B) = 0$$

if and only if $\theta(\varphi(t)-K)\equiv 0$, i.e., B is a Weierstrass point.

We can generalize this fact to the next Proposition.

PROPOSITION 5. A point $B \in M$ is a Weierstrass point if and only if

$$\sum_{i=1}^{g} \frac{\partial \theta}{\partial u_i}(K) u_i^{(g)}(B) = 0,$$

where B is the base point of the Jacobi homomorphism.

PROOF. We first note that a point B is a Weierstrass point if and only if

$$\begin{pmatrix} u'_{1}(B)\cdots u'_{g}(B) \\ \vdots \\ u'_{1}(B)\cdots u'_{g}(B) \end{pmatrix} \begin{pmatrix} \frac{\partial \theta}{\partial u_{1}}(K) \\ \vdots \\ \vdots \\ \frac{\partial \theta}{\partial u_{n}}(K) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}.$$

If the rank of the $g \times g$ matrix is less than g, then B is a Weierstrass point ([3], p. 82). If the rank is g, then it follows from the above equation that

$$\frac{\partial \theta}{\partial u_1}(K) = \cdots = \frac{\partial \theta}{\partial u_n}(K) = 0.$$

Then $K \in W_{g-1}^2 + K$, i.e., $\varphi(B^{g-1}) \in W_{g-1}^2$, and B is a Weierstrass point.

NOTE. The idea of exploiting $\theta(W_{g-1}+K)\equiv 0$ at special points has appeared in [3], [4, pp. 313-314]. The equation can also be obtained by using the fact that if $e\in (W_{g-1}\setminus W_{g-1}^2)+K$, then $\sum_{i=1}^g (\partial\theta/\partial u_i)(e)du_i$ is a holomorphic differential which vanishes at P_1,\ldots,P_{g-1} , where $e=\varphi(P_1\cdots P_{g-1})+K$.

REFERENCES

- 1. A. Duma, Weierstrasspunkte and kanonische stetige Familien von Riemannscher Metriken auf regulären Familien kompacter Riemannscher Flächen, Math. Ann. 210 (1974), 69-74.
- 2. H. Farkas, Special divisor and analytic subloci of the Teichmüller space, Amer. J. Math. 88 (1966), 881-901.
- 3. H. Farkas, Singular points of theta functions, quadric relations and holomorphic differentials with prescribed zeros, in Complex Analysis, Joensuu 1978 Lecture Notes in Math., No. 747, Springer-Verlag, 1979.
- 4. H. Farkas and I. Kra, Riemann Surfaces, Graduate Texts in Math. 71, Berlin-Heidelberg-New York, 1980.
- 5. R. S. Gunning, Lectures on Riemann surfaces: Jacobi varieties, Mathematical Notes, 12, Princeton University Press, Princeton, 1972.
- 6. K. Hensel and G. Landsberg, *Theorie der algebraischen Funktionen einer Variablen*, Teubner, Leipzig, 1902. Reprint: Chelsea, Bronx, NY, 1965.
- 7. R. Horiuchi, On the existence of meromorphic functions with certain lower order on non-hyperelliptic Riemann surfaces, J. Math. Kyoto Univ. 21 (1981), 397-416.

- 8. R. F. Lax, Weierstrass points of the universal curve, Math. Ann. 216 (1975), 35-42.
- 9. R. F. Lax, Gap sequences and moduli in genus 4, Math. Z. 175 (1980), 67-75.
- 10. J. Lewittes, Riemann surfaces and theta function, Acta Math. 111 (1964), 37-61.
- 11. H. H. Martens, On the varieties of special divisors on a curve. I, J. Reine Angew. Math. 227 (1967), 111-120.
- 12. H. H. Martens, Three lectures on the classical theory of Jacobian varieties, in Algebraic Geometry Oslo 1970(F. Oort, ed.), Wolters-Noordhoff, 1972.
- 13. H. C. Pinkham, Deformations of algebraic varieties with G_m action, Astérisque 20, Société Mathématique de France, Paris, 1974.
- 14. H. E. Rauch, Variational methods in the problem of the moduli of Riemann surfaces, in Contributions to Function Theory, Tata Institute of Fundamental Research, Bombay, 1960.
- 15. D. S. Rim and M. Vitulli, Weierstrass points and monomial curves, J. Algebra 48 (1977), 454-476.